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The flow of a liquid film along a periodic wall 
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The creeping flow of a liquid film along an inclined periodic wall of arbitrary 
geometry is considered. The problem is formulated using the boundary-integral 
method for Stokes flow. This method is extended to two-dimensional flows involving 
free surfaces, and is implemented in an iterative numerical procedure. Detailed 
calculations for flow along a sinusoidal wall are perfomed. The free-surface profile is 
studied as a function of flow rate, inclination angle, wave amplitude, and surface 
tension, and is compared with previous asymptotic solutions. The results include 
streamline patterns, velocity profiles and wall-shear-stress distributions, and 
establish criteria for flow reversal. For specified wall geometry, the asymptotic 
behaviour for very small flow rates is shown to be a strong function of surface 
tension. It is demonstrated that these results are valid in a qualitative sense for 
general wall geometries. The analogy between gravity-driven flow and the flow of a 
liquid layer on a rotating disk (spin coating) is also discussed. 

1. Introduction 
An important class of problems in fluid mechanics involves viscous flows in the 

presence of free surfaces or fluid interfaces. The deformation of bubbles or drops in 
specified flows provides a widely studied example with a variety of technological 
applications. I n  more complicated situations, these flows may be affected by the 
presence of solid, elastic or viscoelastic boundaries, as is the case in various coating 
or extrusion operations. Furthermore, these flows often occur simultaneously with 
phase-change phenomena, chemical reactions and heat or mass transfer affecting the 
rate of these processes. Examples from the field of chemical engineering include 
electrochemical plating, chemical etching, crystal growth, and chemical conversion 
in liquid-gas catalytic reactors. 

The mathematical analysis of steady free-surface flows becomes complicated by 
the fact that the location of the free-surface is not known a priori, but has to be found 
as part of the solution. This makes the problem highly nonlinear requiring special 
mathematical treatment. One may derive asymptotic solutions for flows that deviate 
slightly from known simple configurations, but in the general case, one has to rely on 
numerical solutions. The analysis of transient or unsteady flows on the other hand 
requires the tracking of Lagrangian lines that coincide with free surfaces or fluid 
interfaces. This necessitates the development of numerical techniques that are based 
on a Lagrangian formulation, or combine a Lagrangian with an Eulerian description. 

Before considering our specific problem it is appropriate to review available 
numerical techniques for treating free-surface flow problems. In  the following 
discussion we use the term free surface to include both free surfaces and fluid 
interfaces. Confining ourselves to viscous flows, we find three general lines of 



276 C. Pozrikidis 

approach characterized by boundary-integral, finite-difference, and finite-element 
formulations. In the first case, which is applicable only for Stokes flow, the free 
surface constitutes a flow boundary and hence its evolution is pursued in a 
straightforward fashion (Kelmanson 1983; Rallison 1984 ; Geller, Lee & Leal 1986). 
The situation is more complicated when finite-difference or finite-element for- 
mulations are employed, for the free surface may intersect the underlying grid. Here 
one has several choices including the use of boundary-fitted coordinate systems 
(Ryskin & Leal 1984a+) or adaptive grids (see for instance Kistler & Scriven 1983), 
formulation in terms of Lagrangian dynamics (Hirt, Cook & Butler 1970), and the 
use of free-surface or fluid-volume marker points (Hirt & Nichols 1981). It is 
important to bear in mind that the above methods were developed with reference to 
specific physical problems, and thus they are most effective in different physical 
contexts. 

In  the present article we consider the flow of a liquid film along a periodic solid wall 
that is driven by a uniform force field. Previous studies on this topic concentrated 
mainly on the simple but non-trivial case of flow down an inclined, perfectly plane 
wall. There are a number of experimental and theoretical efforts that consider the 
stability of this flow or address the onset of steady, periodic or solitary, finite- 
amplitude waves (Krantz & Goren 1970; Chin, Abernathy & Bertchy 1986). In 
addition, there are numerous experimental studies addressing the effect of wall 
roughness on the critical Reynolds number for transition to turbulence, and on the 
rate of simultaneous heat or mass transfer. Early work in this area is summarized in 
a comprehensive review article by Fulford (1964, $ 1 ~ - E ) .  Studies of flow along 
corrugated walls are limited to a few asymptotic analyses, including the study of the 
linear stability and weakly nonlinear waves on film flow down an inclined uneven 
wall (Tougou 1978), the analysis of flow along a sinusoidal wall with small-amplitude 
striations (Wang 1981 ; Dassori, Deiber & Cassano 1984), and the analysis of flow of 
a very thin film along a curved wall (Wang 1984). We are concerned with the more 
general case of finite-amplitude corrugations and, more importantly, with walls of 
generalized geometry. Specifically, we address how the wall geometry affects the free- 
surface profile and the structure of the flow, with emphasis on flow reversal and wall- 
sheer-stress distribution. Furthermore, we examine the significance of surface 
tension, and discuss the implications of our results on simultaneous molecu- 
lar-convective processes. 

For the analysis of our flow of interest we choose to employ the boundary-integral 
method for Stokes flow. The numerical procedure requires the calculation of only the 
boundary values of the stress and velocity, along with the unknown free-surface 
profile. This formulation lowers the dimension of the computational domain with 
respect to that of the physical domain by one, and thus significantly reduces the 
computational effort. Employing the boundary-integral method restricts the validity 
of our results to conditions of creeping motion (requiring either a low body-force 
environment or moderate flow rates), but allows an accurate and detailed 
investigation. 

It is important to note that although the boundary-integral method has been 
extensively used to study axisymmetric or genuinely three-dimensional problems 
with free surfaces (Rallison 1984), it has only recently been applied to two- 
dimensional flows (Kelmanson 1983). This is perhaps due to certain inherent 
mathematical difficulties encountered in two dimensions, as discussed by Higdon 
(1985). Kelmanson (1983) considers the biharmonic equation (satisfied by the stream 
function), and uses the stream function and vorticity as primary variables. We prefer 
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to follow the velocity-force formulation, for this offers additional advantages of 
straightforward extension to three dimensions, and leads to direct evaluation of 
quantities of primary importance. Furthermore, we devote a significant part of our 
effort to  the development, implementation, and evaluation of various iteration 
techniques including the ones used by previous authors. We felt that this was a 
necessary task before any extensive computations were made. Overall, the proposed 
method, combined with those of Higdon (1985) and Lee & Leal (1986), provide a 
complete description of the boundary-integral method for two-dimensional internal, 
external, semi-infinite, and free-surface flows. 

2. Formulation 
We consider the slow flow of a liquid film along an inclined two-dimensional 

periodic wall, as illustrated in figure 1 .  At very low Reynolds numbers the flow is 
governed by the Stokes equation, with the body-force term included, 

ap a Z u i  

axi axiaxi --+p- +psi = 0, 

au . 
ax, -2 = 0. and the continuity equation, 

For the mathematical analysis, it is convenient to decompose the flow into a 
basic and a disturbance component, denoted by a tilde and an overbar respectively, 
u , ~  = Si + G,, P = + P,  such that 

aP a2di 
axi axjaxi 

--+p-+pgi = 0, 

ap a2ai 

axi axjaxj --+p--- = 0. 

(3) 

(4) 

Both components satisfy the continuity equation. For the disturbance flow we use 
the reciprocal theorem to express the flow as a function of the boundary velocity and 
boundary force, = eijnj, where eij is the stress tensor, 

and nj is the unit normal to the boundary pointing into the fluid (Pozrikidis 1987). 
The result for points on the boundary is 

where the integration is over all solid, free, and liquid flow boundaries. For points 
within the flow domain, the factor & must be replaced by &. 

The tensor S,  constitutes a fundamental solution to Stokes equation representing 
an array of point forces along the x-axis, 

where 

- k$A, 

- @ A ,  A + 1 - k$A, 

A = 81. [2(cosh(k$)-cos(Icl))]+c, 
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T , , ~  = 2p div ( - k$A,, A ) ,  

rxYy = 2p div ( A ,  - k$A,), 

ryyy = 2p div (k&4,, A ) ,  

C. Pozrilcidis 

I 

FIGURE 1. Flow of a liquid film along a periodic solid wall : schematic representation 

2 = x-xo, and c is an arbitrary constant (Pozrikidis 1987). Gi5 = r i jknk,  where the 
tensor rijk expresses the stress associated with the above fundamental solution, 

(7)  

For non-periodic flows or flows having specific symmetries, other fundamental 
solutions may be employed as discussed by Pozrikidis (1987). 

Equation ( 5 )  is an integral equation of the first kind for the boundary force and of 
the second kind for the boundary velocity. It is highly nonlinear with respect to the 
free-surface profile. 

For the boundary conditions, we require the no-slip condition along the solid 
wall 

and zero normal velocity along the free surface, 

ui = 0, or tii = -C. (8) 

(9) 

(10) 

a ,  

uini = 0, or aN = aini = -Gin. Z '  

For flow without surfactants we also require zero shear stress along the free 
surface, 

(T,~ = viiniti = 0, 

where ti is the unit tangent to the free surface ; and a condition for the normal stress 
involving capillary forces 

( 1 1 )  
0- 

gN = g. n.n. = -Po+-  
R' 25 3 2 

where Po is a reference external pressure, g is the surface-tension coefficient, and R 
is the radius of curvature a t  the boundary. Using the last two equations, we may 
derive boundary conditions for the disturbance boundary force a t  the free surface 

= ( - -PO+-  R "1 ni-3i5ni. 
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Defining the flow domain as equal to one flow period, let us integrate (5) over the 
contour indicated in figure 1. Owing to the periodicity of the fundamental solution, 
the contribution from the straight segments vanishes and, thus, the disturbance 
velocity is expressed as an integral over the solid wall W and the free surface S.  

For specified wall shape, liquid flow rate, and surface-tension coefficient, the 
problem is then to solve (5) for the disturbance force along the solid wall, the 
disturbance tangential velocity along the free surface, and the free-surface profile, 
subject to the boundary conditions (8)-( 12). 

3. Numerical procedure 
Having formulated the problem as a nonlinear integral equation (the nonlinearity 

arising through the unknown free-surface profile), we now consider an iterative 
solution procedure. At the outset, it is useful to review possible strategies and to 
formulate them in the context of the boundary-integral method. 

In general, for the iterative solution of steady free-surface problems, two main 
strategies may be adopted. I n  the first, one implements all boundary conditions into 
the governing equations and solves the resulting system. In the second, one 
implements only part of the boundary conditions, and solves the resulting system 
using the remaining boundary conditions as constraints. The success and efficiency 
of each strategy depends on the geometry of the problem as well as on the values of 
the dimensionless parameters characterizing the flow. 

To illustrate the above procedures, let us describe the solid wall and the free 
surface by two sets of nodal points, x, (n = 1,  ..., N )  and xl (I = 1, ..., L )  
respectively (figure 1).  I n  a linear approximation, we assume that both the solid wall 
and the free surface are polygonal lines connecting adjacent nodal points. Further, 
we assume that the tangential velocity a t  the free surface and the wall force are 
constant over each segment and equal to ak and f a  respectively. 

In the first strategy (strategy A), we substitute all boundary conditions (8)-(12) 
into (5) to obtain the equation 

and the Einstein summation convention is implied for the superscripts n and 1. W ,  
and S,  indicate integration over the nth wall segment and the lth free-surface 
segment respectively. Note that for a specified flow geometry, Bj(x,)  can be 
immediately evaluated using (8)-(12). To solve for the unknowns, we employ a 
collocation method and apply (13) a t  the middle of each wall segment, x,, to 
obtain 

aj(xm) + Bj(x,)  = f a C ; ( ~ h ) - G h D j ( ~ , ) ,  (14) 
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where m = 1, ..., N .  Similarly, we apply (13) a t  the middle of each free-surface 
segment, xk ,  to obtain 

%(X,) q x k )  + B , ( X k )  = f r  C $ ( X k )  - M q ( x k )  + qx,,) &,I, (15) 

where k = 1 ,  . . . , L.  Equations (14) and (15) provide a system of 2(N + L )  algebraic 
equations, linear with respect to the 2N wall forces and the L free-surface tangential 
velocities. It is highly nonliner with respect to the a priori unknown free-surface 
profile, as described by xL (I = 1,  . . ., L) .  To solve this system, we introduce the discrete 
function yz(xz), where s1 (1 = 1, ..., L )  are fixed, and specify yl(xl) as a measure of 
flow rate. This provides an additional L- 1 unknowns, namely y1 (I = 2 ,  .. ., L )  raising 
the total number of unknowns to 2 ( N +  L )  - 1. The solution may be found by solving 
a set of 2 ( N + L ) - l  equations using Newton’s method or other techniques. In  
particular, to implement Newton’s method we transfer all terms in (14) and (15) into 
the right-hand side to obtain the set 

F m j ( x m ; f ? ,  f-4, Y1) = 0, Fkj(%fK yz) = 0. (16) 

Newton’s method proceeds by guessing initial values for the unknowns, i.e. the 
wall force, the tangential velocity, and the free-surface profile, and iterating using 
the Jacobian matrix. Evaluation of this matrix requires calculation of the derivatives 
i3Fpi/afr, aF,/a@k and aF,/ay,; the first two are equal to C; and - D: or - (Dj+ 
ti a,,), whereas the third must be calculated by means of numerical differentiation. 

To reduce the computational effort, variations of the above procedure may be 
considered. For example, one may assume that the value of F ,  a t  the point x p ,  is 
much more sensitive to x p  itself rather than to the overall free-surface shape, i.e. 

where dF,/ax, is a Frkchet derivative. This makes the Jacobian matrix sparse, 
reducing the numerical work by a factor of l / ( N + L )  (a similar procedure was 
successfully used by Pierrehumbert (1980) for the calculation of steady, translating 
vortex pairs in irrotational flow). However, unfortunately, test calculations showed 
that for our viscous flow, this assumption is not accurate and the full Jacobian 
matrix must be taken into consideration. 

As a second variation, one may exploit the linearity of the governing equations 
with respect to boundary force and velocity, to reduce the size of the final nonlinear 
system. Specifically, in a procedure similar to that employed by Youngren &, Acrivos 
(1976), one may arbitrarily select from (14) and (15) two independent sets of 2 N +  L 
equations, and solve them with respect to the wall force and free-surface tangential 
velocity. Let us denote the two solutions by (Gk),, (fr), and (G!,.)~, (fr)?, and form the 
L residuals At& = ( f ~ k ) ~ - ( t i ! , . ) ~ ,  and the 2N residuals Af? = ( f? ) , - ( f? ) , .  Requiring 
that L -  1 of these residuals vanish as functions of yl(x,) (I = 2 ,  . .., L )  provides a 
nonlinear system of reduced order. It is clear however that the efficiency of this 
method must depend on the choice of the selected linear systems, as well as on the 
choice of residuals comprising the final nonlinear system. Other variations may be 
devised, but eventually the problem will always be reduced to the solution of a 
system of L - 1 nonlinear equations. 

Considering now the second main strategy (strategy B), we impose on (5) only 
three of the four boundary conditions (8)-( 11). To demonstrate the procedure, let us 
maintain the above discretization, but, in addition, let us assume that the total 
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normal stress is constant over each free-surface segment, equal to r ~ h ,  and treat it 
as unknown. Using (8), (9) and ( l o ) ,  we then write ( 5 )  in the discrete form 

a,(x,) +F,(x,)  = f : c ~ ( x , ) - ~ ~ D ~ ( x , ) + ~ $ E ~ ( x , ) ,  (18) 
where 

Applying this equation at the wall collocation points yields 

u,(x,)+Fr(x,) = f , " C ~ ( x , ) - u ~ D : : ( x , ) + a h E i ( x , ) ,  (19) 

where m = 1, ..., N ,  and a t  the free-surface collocation points 

aN(xk)nj(xk) +pj (xk)  = f : C ~ ( x k ) - u ~ [ D i ( X k ) + t j ( X k ) ~ k l ]  + uhEi(xk)j (20)  

where k = 1, . . . , L. Now we have a linear system of 2(N + L )  algebraic equations in 
2(N + L) unknowns, namely 2N wall forces, L free-surface tangential velocities, and 
L free-surface normal stresses. The fact that the stress normal to the free surface may 
be defined within an arbitrary constant (equal to the external pressure) suggests that 
only 2(N + L)  - 1 of these unknowns are independent. In  our procedure, we specify 
the normal stress along the L free-surface segment, equal to u& = - P o + a / R ( x , ) ,  
and solve an arbitrary set of 2(N + L )  - 1 equations from the above system for the 
remaining 2(N + L )  - 1 unknowns. Imposing boundary condition (1 l) ,  we then form 
the residual normal stresses 

(21)  
U 

A u ~  = U ~ + P O - - - ,  
R 

1 = 1,  . . . , ( L  - l ) ,  where obviously Auk = 0, and adjust the free-surface nodal points 
yz(xz) (1 = 2, . .., L )  to  make these residuals vanish. As previously, this may be 
accomplished using Newton's method or other heuristic schemes. For example, in the 
calculations of Ryskin & Leal (1984a) the free-surface points are moved by an 
amount proportional to the local residual normal stress, in a direction normal to the 
current free surface. 

In a procedure completely analogous to the above, one may choose to  impose the 
normal-stress condition at the free surface ( l l ) ,  and instead, to iterate using the 
condition of zero shear stress (10). Similarly, one may choose to satisfy both dynamic 
conditions (lo), (1 1) a t  the free surface, and to iterate by treating the velocity normal 
to the free surface as unknown, i.e. using the kinematic condition (9), ah (yz,y3, ..., 
yL) = 0. In fact, the problem may be formulated as a transient one, where the flow 
slowly evolves towards an asymptotic steady configuration (Rallison & Acrivos 
1978). Although these methods appear viable, they were not considered in our 
calculations. 

Having calculated the free-surface profile, free-surface velocity, and wall force, we 
may evaluate the velocity within the flow using a discrete form of ( 5 ) ,  

1 1 
a,(xo) = -- I aiGi,dX-- 4XP s [ 3 , , n k + ( P " - ~ ) n i ] S t , d 8  

4 w  w 

- uN ni G, ds + i f :  CG(x,) - & Di(xo) .  (22)  
47w s 
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For the calculations in the present article we tested several of the above 
procedures, comparing their efficiency and convergence. Strategies A and B, both 
implemented with Newton’s iteration, where in the second case the iteration is based 
on the normal-stress method, proved successful for a variety of geometries and in a 
wide range of Bond numbers B = p g / u k 2 .  I n  general, for a moderate number of 
segments ( N  - L - 30) the two methods required comparable computational effort. 
For larger numbers of points, the former method became significantly more 
expensive owing to the increased size of the final system. However, a t  low flow rates, 
strategy A had a larger radius of convergence. 

Strategy A, coupled with Youngren & Acrivos’ (1976) technique, was moderately 
successful, with limited and slow convergence, especially at low Bond numbers (high 
surface tension). I n  addition, i t  was very sensitive to the choice of ancillary linear 
systems and final iteration residuals. Similar difficulties were encountered by 
Youngren & Acrivos (1976) who had to resort to optimization techniques to 
accelerate convergence. 

Strategy B with Ryskin & Leal’s (1984a) iteration technique did not converge, 
although admittedly, we did not devote much effort to refine the iteration 
procedure. 

Additional difficulties were encountered when the free surface was very deformed, 
and when its slope dyldx was locally pronounced. The first is attributed to the 
inadequate spatial resolution associated with our limited computational resources. 
The second is attributed to the very nature of our numerical representation, 
requiring a unique correspondence between the x- and y-coordinates of the surface 
marker points. The latter difficulty may be readily alleviated by adopting a higher- 
order representation, for instance using spine parametrization (Kistler & Scriven 
1983). It should be noted that for the above problematic cases, the calculations did 
converge, but the free-surface profile contained small-amplitude irregularities. 

With respect to the basic flow, two choices were considered, namely 

- 
(23) a = -- ’ sin uy, P = -pg cos uy, 

2v 

where w is the film height a t  the beginning of a Aow cell (figure 3). Although the 
choice of basic flow does not affect the accuracy of the solution, it does affect the 
convergence of the numerical scheme. We found that for a moderate numbers of 
points, the first choice offers a larger radius of convergence, especially a t  low flow 
rates. 

To clarify certain issues of the computational procedure, we note that the 
curvature a t  the free surface was evaluated using cubic-spline interpolation. The 
singular integrals defined above were evaluated by subtracting off the singularities, 
as explained in Pozrikidis (1987). Finally, to ensure that the calculations produced 
a physically acceptable solution, the calculated disturbance boundary force was 
integrated along the boundary of a flow period, and was seen to vanish with 
increasing the number of points. Our numerical results did not indicate multiplicity 
of solutions, although a formal analysis of the Jacobian matrix was not performed. 

With respect to the initial guesses, continuation of the free-surface profile with 
respect to flow rate was employed. When a reasonably accurate initial guess for the 
free surface was available, the Jacobian matrix was calculated only once, a t  the first 
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FIQURE 2. Relative error as a function of total number of segments M = N + L. Heavy solid line 
indicates a slope of -2. Continuous lines correspond to sinusoidal wall with tc = 4 5 O ,  a / h  = 0.200, 
w/h  = 0.100 (see figure 4c) .  Dashed lines correspond to wall with square cavities shown in figure 
16. The different curves correspond to the ylposition of free surface : 0 ,  x , z = i;\ ; 0, 0, z = 0 ; 
a, x = - $ A ,  and to the disturbance z-force along one period of the wall: +, V. 

iteration, and then it was kept constant throughout the calculations. All 
computations were performed on an IBM 3090 computer, with a typical CPU time 
for every calculation in the order of 10 minutes. 

3.1. Numerical error 
The error introduced by the above discretization is discussed in detail by Higdon 
(1985). Here, we mention in passing that for a flow with smooth boundaries, the error 
is O(S2), where 6 is the boundary segment length. For flow with sharp corners, the 
error becomes O(6) for segments in the neighbourhood of the corner, and O(1) for 
segments adjoining the corner. Higdon showed that the corner error is of local 
nature and, therefore, it has little effect on the solution far away from the singular 
region. In  practice, to minimize the error associated with a corner one may use a high 
local density of boundary segments, a policy followed in our calculations. 

To demonstrate that the overall error is indeed 0 ( S 2 ) ,  in figure 2 we present a series 
of data for flow over a sinusoidal wall (figure 4c), as well as for flow along a wall with 
square cavities (figure 16). In  general, for flow on the sinusoidal wall, we found that 
32 segments ( N  = L = 32) along the solid wall and the free surface are sufficient to 
define the free-surface profile within plotting accuracy. However, when the free 
surface developed regions of high curvature, a larger number of free-surface segments 
was introduced. The maximum number of segments used in the present calculations 
was N = L = 64. 

10 FLM 188 
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FIGURE 3. Flow of a liquid film along a wavy wall: schematic representation. 

4. Flow along a sinusoidal wall 
We study the flow of a liquid film along an inclined sinusoidal wall defined by 

y = -a cos (kx), (25) 

where the x-axis forms an angle a with respect to the horizontal (figure 3). This 
geometry is particularly convenient from an analytical standpoint, as it allows a 
comparison of numerical results with asymptotic analysis, and is free of singularities 
associated with wall corners. 

In  non-dimensional variables, the flow may be specified by the reduced wall 
amplitude a/A, the inclination angle 01, the equivalent film thickness for a perfectly 
smooth wall P/h defined by (29) (a measure of flow rate), and the Bond number 
B = pg/ak2.  For numerical convenience however, we introduce an additional 
variable expressing the film thickness a t  the crest of the wavy wall w / h  (figure 3). In  
this fashion, and assuming there is a unique correspondence between w/h and P/h, 
we specify the flow by the two geometrical parameters, a, a/A, the flow-rate 
parameter w/h, and the Bond number. 

In the above definitions we assumed that gravity is normal to the generators of the 
wavy wall. In  fact, this is not a necessary restriction. In the general case, the gravity 
vector may be decomposed into a component normal to and a component parallel to 
the generators. The flows associated with these two components are independent, 
with the shape of the free surface determined exclusively by the flow normal to the 
generators, as discussed in the previous section. The component along the generators 
simply causes a lateral drift of fluid particles, a subject outside the scope of the 
present work. 

4.1. Free-surface profiles 

First, we analyse flow without capillary forces, B = CO, concentrating on the effect 
of wave amplitude, inclination angle and flow rate. As a starting point, we examine 
flow along a wall of moderate amplitude a/h = 0.100, inclined at  an angle of a = 45". 
Before considering the numerical results, it is instructive to consider the two limiting 
cases of very large and very small flow rates. For large flow rates, we expect that the 
waviness of the solid wall will cause only a slight deflection of the free surface from 
the planar shape. For small flow rates, we expect that the liquid film will closely 
follow the profile of the wavy wall. This behaviour is indeed verified by figure 4(a), 
where we present a family of free-surface profiles. For intermediate flow rates, the 
free surface is a nearly sinusoidal wave whose amplitude decreases with increasing 
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FIGURE 4. Free-surface profiles for flow over a wavy wall with (a) inclination u = 45", wave 
amplitude a/h  = 0.100, and in decreasing order ui/h = 0.400, 0.300, 0.200, 0.150, 0.100, 0.050 
or /3/A = 0.444,0.338,0.230,0.173,0.114,0.055; ( b )  as in (a )  but with w / A  = 0.0350 or P / A  = 0.0378, 
where the dashed line shows predictions of asymptotic theory for small flow rates; (c) u = 45", 
alh  = 0.200, and in decreasing order w / A  = 0.100,0.300,0.200,0.100,0.050 or j3IA = 0.457, 0.351, 
0.243, 0.122, 0.059. 

flow rate. There is a phase shift between the free surface and the wall that appears 
to be a non-monotonic function of flow rate. To clarify our graphical description, we 
stress that free surfaces will be represented with solid lines, and streamlines with 
dashed lines. 

Figure 4 ( a )  shows that for very low flow rates, the film thickness tends to zero 
throughout the wall, in a uniform manner. It appears then reasonable to  speculate 
that the flow tends to a state of local equilibrium where the velocity is locally tangent 
to the wall with a parabolic profile, 

?L = 5 4 2 h - 4 ,  2 1' (26) 

where z is in a direction normal to the wall, h is the local film thickness, and yT is the 
gravity component tangent to the wall, given by 

g sin a[ 1 - ( ka )  cot a sin k z ]  
(1 + sin2 kz); gT = (27) 

The leading approximation to the free-surface profile may be inferred from a simple 
mass balance using (26). In  terms of local film thickness this gives 

h 

3vQ 
g sin a 

where 
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is the equivalent film thickness for a perfectly smooth wall, and Q is the flow 
rate. 

The above heuristic description may be put into a formal context of an asymptotic 
expansion, valid for small values of the parameter c = h/r ,  where r is the minimum 
radius of curvature of the wall. The analysis, undertaken by Wang (1984), reveals 
that indeed (26)-(29) provide the leading approximation to the flow. It also shows 
the rather interesting result that except in cases of excessively high surface tension, 
inertial and capillary effects make an order-e contribution to the free-surface 
profile. 

To examine the consistency between the numerical and the above asymptotic 
results, in figure 4 ( b )  we plot a free-surface profile for a quite low flow rate, and 
compare it with the one predicted by (28). We observe a very good agreement that 
is expected to improve at  lower flow rates. Note that the asymptotic theory 
overestimates the film thickness in the decelerating zone. Unfortunately, calculations 
for lower flow rates were prohibited by increased computational cost. 

Now we would like to examine the free-surface profile for other wave amplitudes, 
maintaining the inclination angle at a constant value, 01 = 45". For very small a/h 
our results are in very good agreement with the asymptotic analysis of Wang (1981) 
that is valid for small wave amplitudes and large flow rates, i.e. small alh  and large 
wlh. This analysis predicts that the free surface is a perfect sinusoidal wave whose 
amplitude and phase are functions of flow rate. To illustrate the behaviour for large 
wave amplitudes, we present a series of free-surface profiles for alh = 0.200, figure 
4(c). As previously, for large and moderate flow rates, the free surface is a nearly 
symmetric, sinusoidal wave. For low flow rates however, nearly stagnant regions of 
fluid develop, and the free surface becomes horizontal over the right-hand portion of 
each flow cell. In the limit of zero flow rate, the flow domain is not depleted of fluid. 
The limiting configuration consists of a pool of static fluid that wets part of the solid 
wall, as indicated by the dashed line in figure 4 ( c ) .  

We wish now to consider the free-surface profile in a more quantitative fashion. 
This will help us gain some physical insight and will provide a basis for comparison 
with asymptotic analysis. For this purpose, we define the amplitude b and phase rp 
of the free surface, as shown in figure 3. In  figure 5(a,  b )  we plot these quantities as 
functions of Plh. Figure 5 (a)  clearly illustrates the rapid decrease in the free-surface 
amplitude with increasing Plh, i.e. increasing the flow rate. Figure 5 ( b )  shows that 
rp is always negative, implying increased film thickness along the right-hand side of 
each flow period. As the flow rate is increased, the phase increases rapidly, reaches 
a maximum, and then decreases in a monotonic fashion. For large flow rates, rp tends 
to zero, indicating that the free surface tends to become in phase with the wavy wall. 
In figure 5(a,  b )  (dashed lines), we also show predictions of the asymptotic analysis 
of Wang (1981). For small wave amplitudes, the agreement between the numerical 
and the asymptotic results is excellent, even at  very low flow rates (where the 
asymptotic analysis is expected to break down). For large wave amplitudes, the 
asymptotic analysis overestimates the effect of the wall waviness on the deflection of 
the free surface, particularly a t  high flow rates. 

We saw that a t  high flow rates, the free surface is always a sinusoidal wave, 
whereas a t  low flow rates, i t  follows the shape of the solid wall and may yield pools 
of nearly static fluid. Although,these results were derived with reference to a 45" 
inclination angle, our calculations show that they remain qualitatively valid for 
other wall orientations. As an example, in figure 6 ( a ,  b )  we present free-surface 
profiles for cc = 9", and for wave amplitudes a/A = 0.100 and 0.200. In  addition, in 
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FIQURE 5 .  (a )  Amplitude and (b )  phase shift of the free surface as a function of the flow rate 
parameter (equation (29)), for inclination angle a = 45" and different wave amplitudes: A, 
a/h  = 0.010; 0, 0.100; 0,  0.200; dashed line shows predictions of asymptotoic theory for small 
a /h  and a / w  (Wang 1981). 
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FIQURE 6. Free-surface profiles for flow over a wavy wall of (a) a = 9", a/A = 0.100, and w/A = 
0.400, 0.300, 0.200, 0.100, 0.050, 0.025 or /3/A = 0.448, 0.346, 0.242, 0.129, 0.064, 0.032 ; ( b )  a = go, 
a lA  = 0.200, and w / h  = 0.400, 0.300, 0.200, 0.100,0.050 or /3/A = 0.461, 0.360,0.256,0.140, 0.069; 
(c) a = 90°, a / h  = 0.100, and w/h = 0.400, 0.300, 0.200, 0.100, 0.050 or /3 /A = 0.444, 0.338, 0.229, 
0.113. 0.054. 

figure 6 ( c )  we show profiles for a vertical wall with amplitude a l h  = 0.100. Note that 
in this case, the free surface is symmetric with respect to the origin and, thus, the 
phase shift is equal to zero. 

4.2. Structure of theJlow 
In the previous section we discussed the shape of the free surface as a function of wall 
orientation, wave amplitude, and flow rate. This gave us some insight into the 
physics of the motion by revealing regions of thin-film flow and regions of nearly 
stagnant fluid. In this section we would like to consider in more detail the structure 
of the flow, concentrating on the wall shear stress and streamline pattern. 

The distribution of shear stress along the wall is important in processes involving 
heat or mass transfer and deposition or dissolution of materials a t  high Prandtl or 
Schmidt numbers. For instance, in the case of material deposition, the wall shear 
stress dictates the location and orientation of emerging patterns. Similarly, in the 
case of wall dissolution, the wall shear stress determines the shape of forming 
cavities. Further, high shear stress implies effective removal of particles or bubbles 
that might exist as impurities in industrial fluids. Thus, from an equipment design 
standpoint, one would like to optimize the wall geometry to maintain the wall shear 
stress above a specified minimum level. Finally, the wall shear stress indicates onset 
of recirculating fluid regions; a change in sign of the wall shear stress marks flow 
reversal. Onset of viscous eddies is interesting from a fundamental standpoint (see for 
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FIGURE 7. Shear stress along a wavy wall of a / h  = 0.100 and a = 45'. reduced by the corresponding 
value u* at the same flow rate but for a perfectly plane wall; -, w/h  = 0.500; . . . . . . ,  
0.050. 

instance Hasimoto & Sano 1980), but also from a practical standpoint, as it may 
locally inhibit the rate of heat or mass transport. 

Let us first consider the wall-shear-stress distribution along a wall of amplitude 
a/A = 0.100, inclined at  an angle of 45". Free-surface profiles for this geometry were 
presented in figure 4 (a).  In figure 7 we plot the wall shear stress for two characteristic 
cases. Note that the shear stress is reduced with respect to the wall shear stress for 
the same flow rate but, for a perfectly plane wall, r ~ *  = pgp sin a. For high flow rates, 
the shear stress has a sinusoidal form in phase with the wavy wall. It reaches a 
maximum at  the crest and a minimum at  the trough. This is due to the acceleration 
and deceleration of the fluid above the wave crest and trough respectively, merely for 
mass conservation. This behaviour is similar to that of flow in confined wavy 
channels (Pozrikidis 1987), consistent with the fact that a t  high flow rates, the 
presence of the free surface does not affect the flow in the vicinity of the wall. At 
lower flow rates, the shear stress maintains its sinusoidal form, but its maximum is 
shifted toward the trough. At very low flow rates, the shear stress scales with the 
local film thickness. For the flow corresponding to the dotted curve in figure 7,  the 
maximum and minimum shear stress occur a t  approximately xlh = -0.25 and 
x / A  = 0.25, where the gravity component tangent to the wall (and hence the film 
thickness) reach extreme values. In this case, the shear stress may be approximated 
as a sinusoidal wave which is shifted by 45" with respect to the wall. For both cases 
shown in figure 7,  the wall shear stress is positive implying that flow does not reverse 
direction. Furthermore, our calculations show that the tangential velocity a t  the free 
surface scales with the wall shear stress and by extension, with the local film 
thickness. Thus, it may be readily inferred from the free-surface profiles, using a 
simple, mass balance,. 
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FIGURE 8. Shear stress along a wavy wall of a/A = 0.200 and u = 45"; ~ , u,/h = 0.400; 
' ,  0.200, ----, 0.050. . . . .  

Next, we examine the wall sheer stress for larger wave amplitudes, focusing on the 
case a = 45", a / h  = 0.200 (figure 8). Free-surface profiles for this geometry were 
described in figure 4(c) .  As in the small-amplitude case, a t  large flow rates (solid 
curve), the shear stress is a nearly symmetric wave, in phase with the wall. It 
becomes negative over a small region centred a t  the trough, indicating flow reversal. 
A t  lower flow rates, the sheer stress becomes notably asymmetric (dotted curve). It 
remains positive throughout the wall, indicating that flow reversal may be suppressed 
by sufficiently decreasing the flow rate. Finally,'at very low flow rates (dashed curve) 
the wall shear stress obtains a rather irregular shape. It reaches a maximum a t  some 
point near the wave crest and becomes flat around the trough. Maximum shear stress 
occurs a t  the region of thin-film flow, near the crest of the wavy wall. Minimum shear 
stress occurs a t  the nearly stagnant-fluid region, in t b  vicinity of the trough. As 
previously, the free-surface velocity scales with the wall shear stress. Streamline 
pattens for the three cases discussed above are shown in figure 9(a-c). We observe 
that flow reversal occurs only when the flow rate exceeds a critical value. It should 
be emphasized that flow reversal is due to the increased thickness of the film rather 
than to inertial effects, which are completely absent. 

At this point, we would like to emphasize the implications of the above results in 
certain engineering processes. As an example, we consider chemical etching of a 
dissolving wall. In  this case, the location and shape of forming cavities is affected by 
the distribution of wall shear stress, and our results show that they may be 
effectively monitored by controlling the flow rate. 

The behaviour for other inclination angles is similar to that discussed above. The 
shear stress is increased a t  regions of thin-film flow and reduced at regions of 
accumulated fluid. Flow reversal occurs above a critical wave amplitude, and then 
only for sufficiently high flow rates. The critical flow rate for flow reversal decreases 
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FIGURE 9. Streamline patterns for flow over a wall of (a-c) a = 45O, a lh  = 0.200, and (a )  w lh  = 
0.400, (b )  w l h  = 0.200, (c) wlh = 0.050, (d)  u = go, a / h  = 0.250, w / h  = 0.050. 

as the wave amplitude is increased, and vanishes for very large wave amplitudes. To 
validate the above conclusions, in figure 10 we present the wall shear stress and 
surface tangential velocity for CL = 9", and alh = 0.200 (the corresponding free- 
surface profile was shown in figure 6b) .  Notice that both the shear stress and the 
surface velocity peak approximately at the neck, where the thin film discharges into 
the almost stagnant pool. The shear stress becomes negative over a very small region 
inside the wave trough, indicating a small region of reversed flow. Finally, to show 
that eddies may develop even at low flow rates, provided the wave amplitude is 
sufficiently large, in figure 9(d) we show the streamline pattern for a = 9", w l h  = 
0.250. For even larger wave amplitudes we expect onset of a series of alternating self- 
similar eddies as described by Moffatt 1964 (see also Pozrikidis 1987). 

4.3. Effect of surface tension 
In  this section we discuss the effect of surface tension on the free-surface profile and 
the st,ructure of the flow. Physically, we expect that for constant flow rate, increas- 
ing the surface tension will cause a decrease of the deflection of the free surface from 
the planar shape. This is indeed verified by the asymptotic analysis of Wang (1981) 
as well as by our numerical results for small-amplitude corrugations, figure 11 (a ) .  
Figure 11 (b )  shows a rapid increase of the phase with decreasing the Bond number, 
a result not intuitively obvious. 

The results in figure 11 ( a )  appear to indicate that as the flow-rate parameter Plh 
is decreased, the amplitude of the free surface tends to that of the wavy wall and the 
film thickness vanishes in a uniform fashion. To see whether this is true for all cases, 
in figure ~ ~ ( c c - c )  we present a sequence of free-surface profiles for finite wall 
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FIGURE 10. Shear stress along the wavy wall (-) and free-surface velocity (---) for a = 9", 
a/h  = 0.200, w / h  = 0.050. The velocity is reduced by the corresponding value u* a t  the same flow 
rate but for a perfectly plane wall. 

x / A  

corrugations, alh = 0.200, a = 45", decreasing the Bond number. We observe that a t  
finite Bond numbers (figure 12b, c ) ,  as the flow rate is decreased, the amplitude of the 
free surface does not tend to that of the solid wall but to a smaller value. To 
demonstrate this clearly, in figure 13(a, b )  we plot the free-surface amplitude and 
phase shift, respectively, as functions of flow rate. It is interesting to observe the 
failure of asymptotic analysis of Wang (1981), even in a qualitative sense, for 
moderate or low flow rates, a t  finite Bond number. However, this is to be expected 
since the asymptotic theory ceases to be valid when the mean film thickness becomes 
comparable with the amplitude of the wall. 

The above observations motivate a closer consideration of the asymptotic flow 
structure for small flow rates. We saw that in this limit the flow is composed of a thin 
liquid film which may connect periodic pools of nearly stagnant fluid. As the flow rate 
is decreased, the thickness of this film tends to zero and, thus, the asymptotic 
configuration is either depleted of fluid or composed of periodic pools of static liquid. 
The shape of the free surface bounding each pool is basically determined by a balance 
between capillary and gravity forces. 

1 1  
kh N -- 

B ~ R + ~ '  

where h is measured in the direction of the body force with origin at x = y = 0, c is 
a constant. and 

where y describes the free surface, and the derivatives are with respect to x. To show 
this clearly, in figure 14 we plot the non-dimensional capillary force l /kRB versus 
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FIGURE 11. Effect of flow rate on the (a )  amplitude and ( b )  phase shift of free surface, parametrized 
by the Bond number, for a = 4 5 O ,  a / h  = 0.010, and 0, B = 00 ; 0, 0.5; A, 0.2. Dotted lines show 
predictions of asymptotic theory for small a /h  and large P/h (Wang 1981). 
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FIGURE 12. Free-surface profiles for a wavy wall of a = 45", a/A = 0.200 for different flow rates. The 
sequence (a+) shows the effect of surface tension: (a )  B = 00 and w/A = 0.400,0.300,0.200,0.100, 
0.050or~/A=0.457,0.351,0.243,0.122,0.0591; (b )  B=0.5andw/A=0.400,0.300,0.200,0.100, 
0.050 or P / A  = 0.459, 0.355, 0.248, 0.125, 0.053; (c) B = 0.2 and w/A = 0.400, 0.300, 0.200, 0.100, 
0.050,0.020 or p / A  = 0.463,0.361,0.258,0.145,0.079,0.032; (d )  B = 0.2 and a = go", a / A  = 0.100, 
and w / A  = 0.200, 0.100, 0.050 or P / A  = 0.239, 0.125, 0.057 (compare with figure 6c) .  

the gravity force kh along the free surface for two of the flows depicted in figure 12. 
In  the region of nearly stagnant fluid we observe a linear relationship with slope 
equal to unity, indicating the insignificance of viscous forces. Within the thin film, 
viscous stresses make an important contribution. A t  infinite Bond number, capillary 
forces are absent and, therefore, (30) shows that the free surface bounding a stagnant 
pool must be a straight horizontal line which intersects the solid wall on one end and 
is horizontal to  it on the other ( h  is constant). From the point of view of 
hydrostatics, this configuration accommodates the maximum amount of static fluid. 
At finite Bond numbers, however, both sides of (30) become important and the 
asymptotic free-surface profile is determined by the second-order differential 
equation (30) subject to two boundary conditions. Since from a hydrostatics 
viewpoint these conditions may be arbitrary, there is an infinity of possible 
asymptotic configurations. For instance, forcing the free surface to pass through two 
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FIQURE 13. Effect of Bond number on the ( a )  amplitude and ( b )  phase shift of the free surface as 
functions of flow rate for a wavy wall of inclination angle u = 45', wave amplitude a / A  = 0.200, 
and: 0, B = co ; 0,  0.5; V, 0.2. Dashed lines show predictions of asymptotic theory for small 
a /h  and large P / A  (Wang 1981). 
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FIGURE 14. Capillary versus gravity forces along the free surface for a /h  = 0.200 and a = 4 5 O ,  
for: -, B = 0.5, w/h  = 0.050 and ---, B = 0.2, w/h = 0.020. 

FIGURE 15. Streamline pattern of flow over a wavy wall of inclination a = 4 5 O ,  amplitude 
a/A = 0.200, and film thickness w/A = 0.020, for B = 0.2. 

arbitrarily selected points along the wall yields a family of profiles which are 
acceptable provided they do not cross the wall. The true asymptotic configuration 
however may be found only be means of an exact asymptotic analysis for the specific 
wall geometry, similar to that of Ruschak & Scriven (1977). Here, we must note 
that the analysis of Wang (1984), valid for low flow rates, may not be applied, since 
the film thickness is not uniformly small along the wall. 

It is important to not that for very thin films, molecular forces come into play and 
these may substantially alter the physics of the motion. For example, these forces 
require a contact angle at the solid-gas-liquid contact line, characteristic of the 
fluidlsolid physico-chemical interaction. If the asymptotic hydrodynamic contact 
angle is not equal to this static contact angle, oscillatory or unsteady motion may set 
up. Analysis of this motion would provide an interesting topic for research. 
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FIGURE 16. Free-surface profiles for flow over a wall with a sequence of square cavities of aspect 
ratio 2. (a) B = 03, and w/h = 0.2000, 0.1500, 0.1000 or /3/h = 0.2053,0.1548, 0.1027; ( b )  B = 0.2, 
and w/h = 0.2000, 0.1500, 0.1000, 0.050 or P/h = 0.2130, 0.1606, 0.1051, 0.041. 

To illustrate the structure of the flow a t  finite Bond numbers, we present a 
characteristic streamline pattern (figure 15). Comparing this pattern to the ones 
shown in figures 9 (a-c) for zero surface tension, demonstrates a stong effect of surface 
tension on the structure of the flow. Overall, increasing the surface tension moves the 
free surface away from the wave trough and, therefore, decreases the wall shear 
stress. In  turn, this may lead to flow reversal, in agreement with the predictions of 
Wang (1984). 

We conclude this section by noting that behaviour similar to the above is observed 
for other wall orientations. As an example, in figure 12(d) we present profiles for 
a = 90°, a/h  = 0.100 and for B = 0.5. Observe that a t  the vertical orientation and for 
finite Bond numbers, the free surface is no longer symmetric with respect to  the 
centre of each period (compare with figure Sc). 

5. Flow along a wall with rectangular indentations 
We studied the flow of a liquid film along a wavy wall partly as a means of 

extracting physical information about more general geometries. At this point we 
would like to demonstrate the accuracy of our conclusions as well as the generality 
of our numerical procedure. For this purpose, we discuss briefly flow over a wall 
with periodic rectangular indentations. 

Figure 16 (a,) shows a sequence of three free-surface profiles for a cavities of aspect 
ratio 2 and for Bond number B = 00. It is interesting to observe the pronounced 
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FIGURE 17. Streamline pattern for the lowest-flow-rate case shown in figure 16(a). 

2.0 

0 

I 
I 

-0.50 0 0.50 

x l h  
FIGURE 18. Wall shear stress for the lowest-flow-rate case shown in figure 16(a). 

deformation of the free surface at low flow rates. Calculations for lower flow rates 
required an increased number of points leading to prohibitive computational cost. 
Figure 16(b) shows a sequence of free-surface profiles for the same geometry, but with 
increased surface tension, B = 0.2. Here, we observe a very small deformation of the 
free surface, even a t  very low flow rates. 

Figure 17 illustrates the streamline pattern for the lowest-flow-rate case of figure 
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16(a). There are two series of small, self-similar eddies (Moffatt, 1964) a t  the two 
corners of the cavity which, however, are not detected with sufficient accuracy in the 
streamline pattern. Their presence is manifested in the wall-shear-stress distribution 
shown in figure 18; this obtains negative values over two very small regions centred 
on each cavity corner. It is interesting to observe the strong oscillations in the wall 
shear stress inside the cavity, indicative of regions of accelerating and regions of 
nearly stagnant fluid. 

6. Concluding remarks 
We have described a numerical method, based on the boundary-integral 

formulation, for analysing two-dimensional flows with free surfaces. The method is 
effective for flows with smooth boundaries as well as for flows with corners. Overall, 
our calculations verify the flexibility and efficiency of the boundary-integral 
formulation, and show that it constitutes an attractive alternative in the study of 
two-dimensional, viscous, free-surface problems. 

Our calculations demonstrate a number of features for the flow of a liquid film 
along an inclined, periodic wall. Some of them may appear physically obvious, but 
others come as new insights. It is now appropriate to summarize certain results that 
make the most important contribution. First, we demonstrated that the wall-shear- 
stress distribution changes drastically with the flow rate, with subtle implications on 
the rate of simultaneous heat and mass transfer. Depending on the wall geometry, 
recirculating-flow regions may set up ; these become more pronounced with increasing 
either the flow rate or the surface-tension coefficient. Finally, for finite surface 
tension, the asymptotic free-surface shape for very low flow rates depends on the 
overall wall geometry, and may be resolved only via an asymptotic expansion for the 
exact geometry. 

Our calculations apply directly to the gravity-driven flow of a liquid film along an 
inclined wall. However, there are other situations where our results offer significant 
insights, including the flow of a thin liquid film on a rotating disk. This flow finds 
important applications in spin coating operations, and is exploited for the fabrication 
of optical disks and microelectronic components. In  a spin coating process, a liquid 
film is distributed over a horizontal disk often containing concentric grooves, and is 
subsequently thinned by spinning the disk a t  high angular velocities (Higgins 1986). 
For small film thicknesses, and far away from the disk centre, the flow on an 
azimuthal plane is primarily driven by the centrifugal and the gravity force field. A 
simple analysis indicates that the centrifugal force is proportional to the radial 
distance from the disk centre. Now, to a first approximation, the centrifugal force 
may be approximated as constant over the length of a groove, and the local flow may 
be viewed as being driven by a uniform force field. The orientation of this field is a 
function of the radial distance from the disk centre. Under these assumptions, our 
calculations provide a local description of the spin coating process. 
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